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Target density functions are the fundamental tools that map the reflectivity distribution by processing backscatter radar 
data. Radar imaging systems frequently employ these forms of functions to extract meaningful data from more complicated 
signal space. In this paper, an outline and a coherent reconstruction method for a newly defined target density function for 
radar imaging are presented. The studied approach is based on the fact that the geometry of the radar processing benefits 
from angular scanning along the cross-range. The proposed frame is available to be used with phased array radar systems 
as well as applied to various radar problems. Hypothetical background and step-by-step derivation of the mathematical 
model are discussed. Comparison with other conventional radar imaging methods and strength of the new method is 
emphasized, an implementation using simulated unprocessed data is achieved, outcomes are discussed in terms of 
benefits and finally the future work is given. The results promise simplicity and speed, as well as providing a new method to 
radar imaging. 
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1. Introduction 
 

The idea of imaging with radar is basically mapping 

the reflectivity of the target scene upon a spatial 

representation, but the reason that makes radar imaging 

advantageous is the use of electromagnetic radio waves. 

Besides the radio waves being able to detect from long 

distances, it has dominance over optical imaging systems 

since it is immune to natural obstacles such as high opacity 

and low light environment. The ability to obtain more 

specific information with polarization and phase from the 

target area makes radar an important instrument for 

imaging in various problems [1]–[4]. 

The concept of target density functions referred to by 

different names are fundamental tools widely used in radar 

problems; additionally, radar problems become target 

density function problems after composing the 

mathematical representation of the given signal space. The 

main aim to process the target density/reflectivity function 

from an acquired data is to discriminate the target 

signature at the correct position on signal collection [5]. 

  

 

2. Preliminaries to the study 
 

The first “target density” definition was used by 

Fowle et al. in a pioneer study on radar performance 

analysis in a dense target environment in 1961 [6]. This 

approach was comprising a target density definition, based 

on a special function, an ambiguity function form 

primarily developed by Woodward [7] which has two 

variables: range, and velocity. The defined function 𝜒(∙) 

is: 

 

𝜒(𝜏, 𝑣) =
1

2𝐸
∫ 𝜇(𝑡)𝜇∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑣𝑡 𝑑𝑡

∞

−∞
  )     (1) 

 

where 𝐸 is the total energy of the signal and 𝜇(𝑡) is the 

complex modulation function of the signal. In this 

equation, 𝜏 is the time difference between target’s actual 

delay and the delay belonging to any portion of the signal, 

whereas 𝑣 is the difference between the actual Doppler 

shift of the target and the Doppler shift match point of the 

receiver's matched filter. Thus, the theory considers the 

target signature as a sum of these two-dimensional delay-

Doppler distribution collections of a single target inside a 

dense clutter environment [6]. It is used to emphasize to 

define complex targets and separate the single and 

multiple targets. Rihaczek theoretically extended this 

approach to fill the gaps for pulse trains and reach 

satisfying resolution qualities in the following works [8], 

[9]. Following studies from Rihaczek and Spafford 

discussed the effects of the signal design, moving target, 

and multiple target environments on target density [10], 

[11].  

In another study [12], Naparst advances the theory of 

Fowle for a new approach as well as the first use of the 

“target density function” term. Briefly, the hypothetical 

statement of the method used by Naparst is:   

 

〈𝑒𝑛, 𝑠𝑚〉 = ∫ ∫ 𝐷(𝑥, 𝑦) ×
∞

−∞

∞

0

 

              √𝑦 ∫ 𝑠𝑛((𝑡 − 𝑥))𝑠𝑚̅̅̅̅ (𝑡)
∞

−∞
𝑑𝑡 𝑑𝑥 𝑑𝑦  (2) 

by narrowing to a more compact representation: 

〈𝑒𝑛, 𝑠𝑚〉 = ∫ ∫ 𝐷(𝑥, 𝑦) ×
∞

−∞

∞

0
𝐴𝑛,𝑚(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦     (3) 



502                                                                                   R. F. Cinar, A. Demirkol 

 
where 〈𝑒𝑛 , 𝑠𝑚〉 term is the inner product of the transmitted 

and received signals, 𝐷(𝑥, 𝑦) is the target density function 

and 𝐴(∙) is the wideband cross-ambiguity function. Two 

deterministic solutions of (3) are proposed in [12], in 

order to expand the target density function toward the sum 

of cross-ambiguity functions. The final case yields the 

solution as can be seen in (4), clearly expressing the 

decomposition, 

𝐷(𝑥, 𝑦) ≈
1

√𝑦
∑ 𝑐𝑛𝑚

∞
𝑛,𝑚=0 𝐴𝑛𝑚(𝑥, 𝑦)             (4) 

where 𝑐𝑛𝑚 is the constant that represents the infinite 

integration of the inner product of transmitted and received 

signals from the point (𝑛, 𝑚) within the target scene.  

After the development of the modern synthetic 

aperture techniques, more advanced approaches have 

started to take place in radar imaging literature. One of the 

most common usages of target functions synthesizing 

images from phase history can be seen in the conventional 

Synthetic Aperture Radar and Inverse Synthetic Aperture 

Radar (SAR - ISAR) approaches. Both approaches have 

the same mathematical background, but the geometric 

formations are different owing to the difference between 

the relative movements of the target and the array.  

Let consider an ideal target that has a complex cross-

section of  𝜎𝑡 at the position of (𝑥, 𝑦, 𝑧), then the received 

signal is delayed and attenuated version of the transmitted 

signal. The three-dimensional signal model of the 

backscatter can be expressed as: 

 

𝑠𝑅(𝑡) = ∫ ∫ ∫ 𝜌(𝑥, 𝑦, 𝑧) 

∞

−∞

∞

−∞

∞

−∞

 

× 𝑒𝑥𝑝 (−𝑗2𝜋𝑓0
2𝑅𝑝(𝑡)

𝑐
) 𝑑𝑥 𝑑𝑦 𝑑𝑧            (5) 

for the conditions that regulate the limit between range as 

a function time and pulse repetition interval time: 

2𝑅𝑝(𝑡)/𝑐 ≤ 𝑡 ≤  𝑇𝑃𝑅𝐼 + 2𝑅𝑝(𝑡)/𝑐                (6) 

 

Here, 𝜌 = √𝜎𝑡  is the average reflectivity coefficients 

along the voxel at the position (𝑥, 𝑦, 𝑧),  𝑇𝑃𝑅𝐼  is the pulse 

repetition time interval and 𝑓0 is the center frequency. 

𝑅𝑝(𝑡) is the expression of range function, changing with 

time and angular motion. With an expanded approximate 

expression: 

 

𝑅𝑝(𝑡) ≅ 𝑅(𝑡) + 𝑥 cos[𝑎(𝑡) − 𝜃] − 𝑦 sin[𝑎(𝑡) − 𝜃]  (7) 

 

 Some simplifications can be made by taking 

advantage of assumes and omissions. Coherent 

reconstruction of the frequency-dependent reflectivity 

function 𝜌(𝑥, 𝑦, 𝑧) on a two-dimensional plane by 

compensating the motion errors and phase distortions 

produced by the complex motion of target is called SAR-

ISAR image formation [13]–[16].  

Several different algorithms are developed for SAR-

ISAR reconstruction; Radon transform-based back-

projection algorithm [17], [18], range stack algorithm [19], 

𝑜𝑚𝑒𝑔𝑎 − 𝑘 algorithm [20], time-frequency based spectral 

approaches that benefit from processing in informative 

domains [13], time-domain correlation (TDC) [21] and 

polar reformat algorithm based on tomographic imaging 

techniques [22] can be demonstrated among the most 

commonly used ones. Individually, these algorithms have 

powerful and weak sides on some matters such as 

processual cost, maneuvering target problems, multiple 

target problems, reliability against focal errors, low or high 

scanning angle, and algorithmic complexity. 

 

 

3. Imaging with Target Density Functions 
 
3.1. Reflectivity and dense target environment 

 

The expectation from a radar imaging system is to 

distinguish the impulse response or the point spread 

functions (PSF) of the close elementary targets. Here, the 

target signature can be assumed as a composition of point-

like pulses, ideally a combination of perfect delta-Dirac 

functions, but practically, it spreads to functions like sinc 

due to the signal acquisition under finite bandwidth.  

The more enhancement of the resolution means 

achieving the more detailed mapping of these structures. 

One more point to be remarked is that imaging systems 

have more than one dimension that spread the impulse 

response of the target signature. A reason for this spread is 

the continuous illumination of the scatter points of the 

target, during the formation process [23]. One other reason 

is the targets with higher dimensions that invade larger 

area, maybe more than a few points on the image, cause 

interactions with the impulse response distributions of the 

small targets. Thus, an exact definition of resolution 

cannot be made instead of theoretical assumptions. Surely, 

despite the necessity of high resolution that forces one to 

use narrower pulses, the trade-offs between resolution, 

total pulse energy, efficiency of the transmission, and 

activity of the physical circuits should be examined 

carefully. Other phenomenal effects such as multipath and 

clutter are well worked already and can be found in radar 

literature [1], [2]. 

Range resolution (𝜌𝑟) gets improved when the 

transmitted waveform bandwidth (𝐵) is larger, whereas 

azimuth resolution (𝜌𝑎) is better if the active effective size 

of the phased array (𝐴𝑒) is bigger and it occurs as the 

synthetic aperture length increases [24], expressively: 

 

𝜌𝑟 =
𝑐

2𝐵
                                      (8) 

where 𝐵 is the bandwidth and 𝑐 is the propagation speed 

of the transmitted signal. 

For determination of the cross-range resolution, the 

angular resolution (𝜌𝜃) must be defined first: 
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𝜌𝜃 = 𝜆
2𝐴𝑒

⁄ =
𝜆

2(𝑀𝑡𝑀𝑟−1)𝑑 ∙cos 𝜃
                 (9) 

where 𝜃 is the aspect angle, 𝑑 is array spacing,  𝑀𝑡 is the 

number of transmitter elements and 𝑀𝑟 is the number of 

the receiver elements. Thus, the cross-range resolution 

(𝛿𝑅) belongs to a position with parameters 𝜃 and 𝑅 

becomes approximately [25]: 

𝛿𝑅 ≈ 𝜌𝜃 ∙ 𝑅                               (10) 

 
3.2. Imaging model 

 

Let suppose a phased array antenna is composed of 𝑁 

identical elements with linear and symmetrical 

distribution with a range of  −𝑥 to 𝑥, for 𝑥 equals to 
(𝑁 − 1)/2 ∙ 𝑑 and −𝑥 equals to −(𝑁 − 1)/2 ∙ 𝑑,  where 

𝑑 is spacing of the antenna elements. To adjust the 

direction of the beam pattern around the interested target 

scene, a compact linear phase form for 𝑖th
 antenna element 

is formulated below: 

 

𝑒𝑥𝑝 (−𝑗
2𝜋

𝜆
𝑥𝑖 ∙ cos(𝜃))                          (11) 

where the angle of steering is represented by 𝜃, 

wavelength by 𝜆 and 𝑖 is the indices for the initial element 

in the steering process [26], [27]. Thus, a focused beam, 

with angle 𝜃 is achieved on the radiational far-field region 

by manipulating the phases of the excitation signals on 

entire radiating elements. The rationale behind the usage 

of the phased array is to take advantage of the same 

steerable pattern, i.e. bi-directional behavior in sending 

and receiving. In many applications, both sending and 

receiving systems are separately required as bistatic radar; 

the solution to this problem is known as the compact 

transmit/receive module (T-R module). Phased array 

systems usually employ the individual antenna elements 

with a spacing of half of the signal wavelength; surely, 

some other formations with different goals are used as 

well. In this work, the gain of the array can be considered 

uniform for all scanning directions, for simplicity [26], 

[27]. 

Let start with the definition of the transmitted signal; 

consider 𝑝(𝑡), a periodic function of time, such as pulse 

train shown below for 𝜔0 = 2𝜋 × 𝑃𝑅𝐹: 

 

𝑝(𝑡) = ∑ 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡∞
𝑘=−∞                       (12) 

where 𝑎𝑘 is the amplitude for harmonic number 𝑘 and 

𝑃𝑅𝐹 is the pulse repetition frequency. For a typical 

narrow band radar, a stepped frequency or a chirp 

waveform can provide high range resolution [28].  

Before the transmission, we multiply the radar 

waveform 𝑝(𝑡) by a carrier wave 𝑠𝑐(𝑡) to get the 

modulated signal 𝑠𝑚(𝑡) as follows: 

 

𝑠𝑚(𝑡) = 𝑝(𝑡) × 𝑠𝑐(𝑡)                         (13) 

where the carrier signal is a sinusoidal waveform with 

higher frequency as follows: 

𝑠𝑐(𝑡) = 𝑒𝑗𝑘𝜔𝑐𝑡                                (14) 

 

Let consider the area imaged within the desired limits, 

𝑅 ∈ [𝑅𝑐 − 𝑅0 , 𝑅𝑐 + 𝑅0] along the slant range and  

𝜃 ∈ [𝜃𝑐 − 𝜃0 , 𝜃𝑐 + 𝜃0] along the scanning angle by 

considering the symmetric approach for the target area 

where 𝜃𝑐 is the center of the angular domain and 𝑅𝑐 is 

assumed center of the target area along the range. For a 

single scatter point at the position (𝑅, 𝛽), representation of 

the reflectivity is: 

𝑦(𝑥, 𝑡) = 𝑠𝑚 (𝑡 − 2𝑅
𝑐⁄ −

𝛽𝑥
𝑐⁄ ) 𝑔(𝑅, 𝛽)          (15) 

 

where 𝑥 is the dimension of the actual element of the 

array and 𝑡 is the time. Here, it can be remarked that the 

𝑦(∙) is a back-reflected and delayed replica of the 

modulated signal 𝑠𝑚(𝑡) from the point (𝑅, 𝛽). It should be 

emphasized that the target density function, 𝑔(𝑅, 𝛽), that 

this paper giving a point on has a unique pair of spatial 

definition, (𝑅, 𝛽), where 𝑅 is the radial range and the 𝛽 is 

the angular cosine, i.e. the cosine of the scanning angle 𝜃. 

The imaging geometry of the target scene can be seen in 

Fig. 1.  
 

  
Fig. 1. Imaging scenario and geometry 

 

In literature, radar imaging methods express the target 

model as mapping of the reflective points on a spatial 

plane. By considering whole the imaging plane within 

boundaries, superposition of the amplitude and phase 

representation of all the reflective points can be shown as,  

 

○ 𝑔(𝑅, 𝛽) 

𝑅 

𝜃 
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𝑦(𝑥, 𝑡) = ∫ ∫ 𝑠𝑚 (𝑡 − 2𝑅
𝑐⁄ −

𝛽𝑥
𝑐⁄ )  ×

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

1

−1

                                   𝑔(𝑅, 𝛽) 𝑑𝑅 𝑑𝛽                                (16) 

 

by organizing the modulated signal yields: 

 

𝑦(𝑥, 𝑡) = ∫ ∫ 𝑝 (𝑡 − 2𝑅
𝑐⁄ −

𝛽𝑥
𝑐⁄ )

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

1

−1

 

         × 𝑒−𝑗𝜔𝑐(𝑡−2𝑅
𝑐⁄ −

𝛽𝑥
𝑐⁄ )𝑒−𝑗𝜔𝑐𝑡𝑔(𝑅, 𝛽) 𝑑𝑅 𝑑𝛽       (17) 

where 𝑦(𝑥, 𝑡) is the output of the antenna element located 

at the center of the array, and c is the propagation speed of 

the wave, light speed for the ideal case.  

This expression can be rewritten by taking the pulse 

train given in (12) into account: 

 

𝑦(𝑥, 𝑡) =

= ∑ 𝛼𝑘𝑒−𝑗(𝜔𝑐+𝑘𝜔0)𝑡 ∫ ∫ 𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(2𝑅
𝑐⁄ )

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

1

−1

∞

𝑘=−∞

 

        × 𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(
𝛽𝑥

𝑐⁄ )𝑔(𝑅, 𝛽) 𝑑𝑅 𝑑𝛽    (18) 

 

where 𝑘 is the notation of the harmonics that stated 

before, in (12). 

Next step continues by demodulation process, here the 

information content extracted from the carrier by 

multiplying 𝑠𝑑(𝑡) with the synthesized equation 𝑦(𝑥, 𝑡): 

 

𝑠𝑑(𝑡) = 𝑒−𝑗(𝜔𝑐+𝑘𝜔0)𝑡                   (19) 

 

thus the effect of the carrier is removed from the collected, 

raw data, the equation becomes as follows: 

 

𝑌(𝑘, 𝑥) = ∫ ∫ 𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(2𝑅
𝑐⁄ )

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

1

−1

 

                        × 𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(
𝛽𝑥

𝑐⁄ )𝑔(𝑅, 𝛽) 𝑑𝑅 𝑑𝛽          (20) 

 

For fixed 𝑘 and 𝛽 variables, target density distribution 

along the range becomes: 

 

𝐺(𝑘. 𝛽) = ∫ 𝑔(𝑅, 𝛽)
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(2𝑅

𝑐⁄ ) 𝑑𝑅    (21) 

 

and clearly, for fixed 𝑘 and 𝑥 variables: 

 

𝑌(𝑘. 𝑥) = ∫ 𝐺(𝑘, 𝛽)
1

−1
𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(

𝛽𝑥
𝑐⁄ ) 𝑑𝛽       (22) 

 

Range resolution capabilities of the transmitted signal 

can be evaluated at the output of this step of the process by 

observing the high-resolution range profiles which has the 

spread of each target’s signature along the 𝑅. As 𝑘 in the 

previous equation is fixed, for notational simplicity, it can 

be written as follows: 

𝑌𝑘(𝑥) = ∫ 𝐺𝑘(𝛽)
1

−1
𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(

𝛽𝑥
𝑐⁄ ) 𝑑𝛽     (23) 

 

So far, all the process was handled for the single 

sensor at the center of the array. For 𝑁 sensors that are 

individually linearly spaced at 𝑥 = 𝑥𝑖, the output of the 

array for each angle becomes: 

𝑎𝑖(𝛽) = 𝑒−𝑗(𝜔𝑐+𝑘𝜔0)(
𝑥𝑖
𝑐

𝛽)
                    (24) 

 

Thus, for some constant of 𝑏𝑖, the estimation of the  

𝐺𝑘(𝛽) becomes approximately: 

𝐺𝑘(𝛽) = ∑ 𝑏𝑖 × 𝑎𝑖(𝛽)                ∞
𝑖=−∞  (25) 

 

Equation (22) and (23) show the superposition of the 

back reflections along the array, for a fixed incident angle, 

𝜃.  
        If the beamforming model stated in (24) and (25) are 

reorganized as anticipated, the expected target density 

function is finalized in form of Fourier series as below: 

 

𝑔(𝑅, 𝛽) = ∑ 𝐺𝑘(𝛽)∞
𝑘=−∞ 𝑒𝑗(𝜔𝑐+𝑘𝜔0)(2𝑅

𝑐⁄ )      (26) 

 

here, the infinite limits of the array are practically 

impossible, thus limits are replaced with finite aperture 

composed of N elements by considering a symmetric 

approach for array processing. 

 

𝑔(𝑅, 𝛽) = ∑ 𝐺𝑘(𝛽)
(𝑁−1)/2
𝑘=−(𝑁−1)/2 𝑒𝑗(𝜔𝑐+𝑘𝜔0)(2𝑅

𝑐⁄ )     (27) 

 

The resulting function with Fourier theory will make 

more contributions to active sensor imaging. Equation (27) 

is the final expression that clearly reconstructs the target 

density function distribution on the (𝑅, 𝛽) plane.  

 

 

4. Implementation 
 
4.1. Technical details 

 

The theoretical basis of the method introduced in this 

paper is demonstrated in a general frame. An 

implementation is conducted for verification of the 

validity of the proposed approach, for a radar operates in 

spotlight mode, as well as easily adapted to inverse 

synthetic aperture radar operations. A raw data synthesizer 

with high accuracy is designed to generate backscatter data 

from desired number of targets by computing phase 

change related to delays. 

A radar array, consisting of nine antenna elements, 

one of which is in the center with a spacing of 𝜆/2, is 
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considered for a fixed position and has an accurate range 

and direction information of the targets. Presumed targets 

are ideal point-like, Swerling-0 model [1], [29] that enable 

one to observe point spread function shape and 

discrimination of close targets on resulting image [30]. 

The preferred specifications are shown in Table 1.  

 

Table 1. Implementation parameters 

Symbol Definition Value 

 Signal type LFM 

𝑇 Signal duration 2.5 × 10−7 s 

𝐵 Signal bandwidth 100 MHz 

𝑓𝑐  Carrier frequency 500 MHz 

𝑅 Initial position in range 1000 m 

𝑃𝑅𝐼 Pulse Repetition Interval 20 × 10−6 s 

𝜃𝑚𝑖𝑛 Angle (min) Broadside (−10) 

deg. 

𝜃𝑚𝑎𝑥 Angle (max) Broadside (+10) 

deg. 

𝜃𝑠𝑞 Squint angle (in squint 

mode) 

30 deg. 

𝑁 Number of the array 

elements 

9  

𝑑 Spacing of the array 

elements 

𝜆/2  

𝑛𝑡 Number of the targets 5 

𝑐 lightspeed 3 × 108 m/s 

LFM is the abbreviation for Linear Frequency Modulated Signal, 
s=second, m=meter, MHz=Mega-Hertz, deg.=degrees. 

 

 

A train of LFM pulses are transmitted from the array 

and signal to noise ratio is set to 10 dB. Designed LFM 

pulse is selected symmetric by the reason of its capability 

of good noise immunity and production of low sidelobes 

levels; good accuracy in estimation of other parameters 

used in the imaging algorithm is one other advantage in 

using this waveform [31], [32]. A brief flowchart of the 

algorithm given above, showing the basic steps, starting 

with the acquisition of data up to the plot of the image, is 

given in Fig. 2 below. 

 

 

Fig. 2. Flow chart for the reconstruction of  

Target Density Function 

 

4.2. Results 

 

In this section, some results of both the method 

derived and the other conventional methods are presented. 

The same dataset is used in all algorithms to be able to 

compare the quality of the final images. Here, three 

different commonly used reconstruction algorithms are 

chosen for comparison as conventional radar imaging 

systems such as Omega-k algorithm, Range Stack 

algorithm, and Convolutional Back-projection algorithm. 

By a majority, it is preferred to be used the algorithms 

not generating additional errors due to a phase 

approximation or digital data interpolation. Range 

Stacking [19] and Omega-k [20] algorithms are analyzed 

belong to the group of relatively modern reconstruction 

algorithms that do not contain focal errors. Both these 

approaches are classified in high-resolution radar imaging 

techniques; however, digital data interpolation is not 

required in the Range Stacking Algorithm, thus processual 

errors such as truncation errors are not observed. 

The resulting image of the Omega-k algorithm (stated 

in other words Migration Algorithm or Wavefront 

Algorithm in some references) is demonstrated below, in 

Fig. 3.  

The shape of the point spread function can be clearly 

observed around the neighborhoods of the target located at 

the origin of the target scene, descriptively, the spread of 

the target at the coordinates (1000,0) in the following 

images will demonstrate the response of the imaging 

algorithms.  
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Fig. 3. SAR image reconstructed with Omega-k algorithm 

 

The second one is the Range Stack algorithm. This 

algorithm continuously reforms the target function for all 

the range points within the imaging interval, thus it called 

Range Stacking [19]. Fig. 4. Shows the resulting image of 

the Range Stack algorithm.  

 

 

Fig. 4. SAR image reconstructed with  

Range Stack algorithm 

 

One other result that can be seen in Fig. 5, is the 

output of the Convolutional Back-projection algorithm. 

The Back-projection algorithm is one of the commonly 

used algorithms due to its real-time running capability and 

applicability to wide areas, despite its poor computational 

efficiency [17], [18].  

 

 

Fig. 5. SAR image reconstructed with Convolutional  

Back-projection Algorithm  

 

 

As for the developed model in this study, the images 

demonstrate the results of the radar reconstruction with 

target density functions. Recovery around the target points 

is at the desired level, moreover, this result is obtained 

with a fast and simple algorithm. As stated previously, 

with higher bandwidth and angular variation, it is possible 

to reach better focus within the neighborhoods of the 

target; in other words, a peak-like point spread function 

closer to ideal form.  

 

 

Fig. 6. Output of the algorithm stated for Target Density 

Function Reconstruction (broadside mode) 

 

Total angular variation is directly related to the 𝛽, 

thus increased total scanning angle yields an improved 

image along the cross-range plane. By considering (23), 
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the smaller angular interval gives closer integral limits, 

thus the closer phase terms that limits one to distinguish 

the close targets along 𝛽, in other words, particularly, the 

close targets have same 𝑅 cannot be resolved. 

Next image shows the result of an imaging scenario 

has a squint angle of 30 degrees and ±10 degrees of the 

imaging angular interval for the presented algorithm. 

Parameters are kept as shown in Table 1. Another 

advantage of the use of the angular parameter in core 

function appears in squint imaging. In classic SAR 

reconstruction algorithms, the squint process is being 

handled in a separated step by using baseband conversion 

in the slow time domain.  

 

 

Fig. 7. Output of the algorithm stated for Target Density 

Function Reconstruction (squint mode with an angle of 30 

degrees) 

 

It is clear that the synthesized datasets used in this 

implementation are acquired from a target with a known 

and stable trajectory; consequently, time-consuming steps 

such as post-processing for image enhancement are not 

taken into account during the analysis of the computational 

processing complexity and runtime analysis, but only the 

reconstruction algorithms [33].  

 

Table 2. Processual Runtimes of the Algorithms 

 

Algorithm Runtime 

Omega-K algorithm 0.461   sec. 

Range Stack algorithm 10.551 sec. 

Back Projection algorithm 55.201 sec. 

Reconstruction with Target Density Function 0.621   sec. 

sec.: second 

 

 

Table 2 indicates the comparative results of the 

execution time of the algorithms measured under the same 

computation conditions. The tool was used in the analysis 

of runtime statistics is Profiler under MATLAB
®
 software. 

The results declare that the execution time efficiency of 

the introduced algorithm is acceptable; by comparing the 

simplicity of the algorithm with others, considerable 

advantageous.  

Additionally, all the results are enhanced by filtering 

out the noise and residues of the process on the frequency 

domain and cross-terms are removed on the ambiguity 

domain. 

 

 

5. Conclusion and Future Work 
 

Target density functions are useful for the extraction 

of the spatial reflectivity distribution of the targets from 

non-processed backscatter data and motion information of 

the target. Determination of the point spread function of 

the individual targets enables one to bypass the 

beamforming on the receiver side.  

Direct use of angular variables on imaging function 

makes it possible to ease the formulation of the squint 

process. As given in results, it is clear that the derived 

𝑔(𝑅, 𝛽) type target density functions are successful both 

for the broadside and for the squinted mode imaging. 

Whereas, conventional approaches may require more 

complicated squint process steps, 𝑔(𝑅, 𝛽) is practically 

based upon Fourier theory. 

The complexity of the derived method is discussed 

and compared with other methods; practicality of the new 

method provides an insight into the convenience of use. 

Processual cost-efficiency of the method is examined by 

comparing other chosen methods. Results obtained from 

the runtime analysis are presented in Table 2 and confirm 

that the processual cost-efficiency is one other powerful 

side of the algorithm proposed. 

In future works, this theoretical formation is planned 

to be expanded for a wideband approach and a new 

formation will be put forward by considering the physical 

challenges for wideband imaging applications, such as 

through-the-wall and in-wall radar imaging. 
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